Weak homological dimensions and biflat Köthe algebras
نویسندگان
چکیده
منابع مشابه
phi-Amenable and phi-biflat Banach algebras
In this paper we study the concept of ph-biatness ofa Banach algebra A, where ph is a continuous homomorphism on A.We prove that if ph is a continuous epimorphism on A and A hasa bounded approximate identity and A is ph- biat, then A is ph-amenable. In the case where ph is an isomorphism on A we showthat the ph- amenability of A implies its ph-biatness.
متن کاملThe behavior of homological dimensions
Let R be a commutative noetherian ring. We study the behavior of injectiveand at dimension of R-modules under the functors HomR(-,-) and -×R-.
متن کاملHomological Dimensions and Regular Rings
A question of Avramov and Foxby concerning injective dimension of complexes is settled in the affirmative for the class of noetherian rings. A key step in the proof is to recast the problem on hand into one about the homotopy category of complexes of injective modules. Analogous results for flat dimension and projective dimension are also established.
متن کاملphi-amenable and phi-biflat banach algebras
in this paper we study the concept of ph-biatness ofa banach algebra a, where ph is a continuous homomorphism on a.we prove that if ph is a continuous epimorphism on a and a hasa bounded approximate identity and a is ph- biat, then a is ph-amenable. in the case where ph is an isomorphism on a we showthat the ph- amenability of a implies its ph-biatness.
متن کاملHomological dimensions of complexes of R-modules
Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sbornik: Mathematics
سال: 2008
ISSN: 1064-5616,1468-4802
DOI: 10.1070/sm2008v199n05abeh003939